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ABSTRACT 
/ y c / @  

A steady s ta te  solution is obtained to the equation for  the 

electron density in an  isothermal one dimensional model of the 

F - l aye r .  

to include the effects  of different ion and electron temperatures  

and a more  real is t ic  electron production t e rm.  

solution is obtained f o r  the steady s ta te  e lectr ic  field necessa ry  to 

maintain charge neutrality. 

surpr is ing.  

conditions for  such a model and their  effect on the solution. 

effect of a plane parallel  approximation on the boundary conditions 

is also included. 

The solution is an  extension of a previous resu l t  of Bowhill 

Simultaneously a 

This resu l t  is new and somewhat 

Considerable attention is  paid to the possible boundary 

The 



I. Introduction 

In a recent  paper  Comstock [ 1965al has der ived a s e t  of 

equations governing the diffusion of a three component (ions,  

e lec t rons ,  and neut ra l s )  gas in  a spherically symmet r i c ,  s teady 

s ta te ,  isothermal  planetary atmosphere,  in the absence of a 

magnetic field. 

1) that  they include a differential equation for  the e lec t r ic  field 

throughout the atmosphere;  2 )  that  they a r e  applicable to any 

degree  of ionization f r o m  a weakly ionized atmosphere to  a totally 

ionized atmosphere;  and 3 )  that no a p r io r i  assumption has  been 

made concerning the validity of ambipolar diffusion. 

propert ies  of these equations have already been discussed 

[ Comstock 1965 a ,  1965133. 

equations to the case  where the neutral  to ion density ra t io  is 

between lo' and 1, which ratio is consistent with the major  portion 

of the F - l aye r .  

and electron velocit ies,  subject to appropriate boundary conditions. 

The solutions to this idealized model ionosphere should give some 

insight into the physics of the ea r th ' s  F - l aye r .  

The distinctive features  of these equations a r e :  

Some of the 

In this paper we specialize these 

We then solve fo r  the e lec t r ic  field and the ion 

11. The Basic Equations 

Our basic  assumptions include the following. Ea.ch spec ies ,  

k ,  is isothermal  a t  its own temperature  Tk. 

velocities q 

is sma l l  compared to the potential energy due to gravity.  

The average dr i f t  

a r e  sufficiently sma l l  that the dr i f t  kinetic energy k 

Everywhere 
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except at  the boundary of such an atmosphere,  the gas is near ly  

electr ical ly  neut ra l  ( s ee  [ Comstock, 1965a ] fo r  a fur ther  

discussion of this point). Last ly ,  the e lec t r ic  field E is 

derivable f r o m  a potential C$ . 
the subscripts i, e ,  n r e fe r  to ions,  electrons and neutrals  

Then throughout the following 

(atomic oxygen) respectively.  We introduce the following 

definitions: 

p = m a s s  rat io  = m /m. e 1  

H = -  kTn 

mn go 

= the gravitational field a t  the reference height g0  

He = H / p  

a =  Te /Tn  

b = Hego/HZ 

n 

n 

= the reference electron density 

= the reference neutral  density. 

e o  

no 

We then define our  dimensionless var iables  by 

Te = ne/neo 

Tn - nn/nno 

z = r / H  

- 

In the above G(r )  is the gravitational potential due to the ea r th ' s  

gravitational f ield.  We a l so  wri te  

n 
- = the ion-neutral  collision f requency  

g(z) = the (known) ionization ra te  

n 

in U. 

h(z) = the (known) recombination r a t e .  
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Then the bas ic  equations governing our  a tmosphere become 

(Comstock [ 1965a ] ) 

1 n n 
= (h(z)ne -g(z)nnoTn) pbneo( l t a )  

The production t e r m  g(z) is taken f r o m  Nisbet [ 1963 1 .  It is 

a model devised so as  to include the depletion of radiation with depth 

in a c rude ,  but useable form.  

a r e a  on a l a rge  sphere  of radius z 

If the radiation intensity p e r  unit 

is g(z,) then 
0 
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The recombination t e r m  h(z)  ne is taken a s  a l inear  

function of the electron density. The function h(z) i s  proportional 

to  the (known) density of molecular  oxygen, assumed in s ta t ic  

equilibrium, according to the well  known charge exchange 

recombination mechanism in the F- layer .  

It is the solution to  this s e t  of equations, (1) - (5) ,  which 

we wish to discuss here .  

111. The Part ic le  Densities 

We see that we can solve the equations (1) and ( 3 )  fo r  the 

electron and neutral  densit ies independently of the e lec t r ic  field.  

The equation f o r  the neutral  density is the s implest ,  and thus shal l  

be solved f i r s t .  

Considering first the right hand side of equation ( 3 )  and 

using the data typical of the ionosphere,  we s e e  that the ionization 

and recombination terms a r e  of the same  o r d e r  of magnitude, but 

that each is of the order  of . 
hand side of ( 3 ) .  

distribution i s  the f ami l i a r  barotropic solution in spher ica l  

coordinates 

So we sha l l  neglect the r ight  

Then the solution of the neut ra l  density 

“n 0 

where A and B a r e  a r b i t r a r y  constants of integration. 
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Then equations (1) and (2)  become 

If the recombination coefficient P1 and the ionization coefficient (Y 1 

were  sma l l  enough to be ignored, then the electron equation (7)  

would be a ve ry  simple equation to  solve. 

the solution would be 

It is easi ly  seen  that 

That is, the purely diffusive motion of the ion-electron gas consists 

of a l inear  combination of two diffusive t e r m s ,  one with an  effective 

molecular  weight of the neutrals and the second with a n  effective 

molecular weight of the static neutral  plasma.  We note that, a s  

long a s  1 Az’l> 1A 1 1 ,  then a t  sufficiently g rea t  heights,  the solution (9)  

becomes dominated by the second t e rm.  That i s ,  the s ta tement  that  

a t  sufficiently g rea t  heights the ion-electron plasma is essential1 y 

in diffusive equilibrium does not determine e i ther  of the two constants 

in (9).  W e  note a l s o  that the two solutions which make up equation 
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(9) a r e  monotonic functions of height. 

coefficient ze ro  is to ins i s t  that such a solution admit  no peak. 

We make these comments on this obviously unreal is t ic  

Thus to chose ei ther  

solution a t  this point because i t  turns out that  many of the s a m e  

fea tures  will appear  in the solution to the full equation (7) .  W e  

a l s o  note that f r o m  equations (6) and (9) we can  suspect  (and will  

l a t e r  confirm) that the atmosphere we wish to  descr ibe i s ,  of 

necessi ty ,  of finite thickness. If the atmosphere i s  to  have a 

peak in the electron density,  and to approach diffusive equilibrium 

a t  g rea t  heights, then a t  the lower end the electron density mus t  

drop  below lom4 

the electron density decreases  a t  g rea t  heights , more  slowly 

than the neutral ,  and s o  will eventually exceed the neut ra l  density. 

Thus a t  both the upper and lower ex t remes  we violate the bounds 

on the density ra t ios  under which assumption we derived our basic  

equations. 

a tmospheres  of finite thickness 

times the neutral  density. On the other hand, 

Thus equations (1)-(5)  can be used only to discuss  

We now proceed to t r y  to solve the equations (1) ,  ( 2 ) ,  

(4), (5). Unfortunately f o r  analytical purposes  , the recombination 

and ionization t e r m s  in ( 7 )  cannot be ignored. Equation (7) is then 

a variable coefficient, l inear  differential equation, whose solution 

i s  not known in t e r m s  of s tandard functions. 

advantage of the f a c t  that our  model a tmosphere is necessar i ly  a 

finite atmosphere,  of relatively thin nature  The ma jo r  difficulty 

in solving ( 7 )  and (8) is 

equation. 

some middle point in  the atmosphere.  

However, we can take 

the variable coefficient nature  of the 

We thus expand the coefficients i n  a power s e r i e s  about 

It is convenient to chose 
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this point as the point of maximum ionization ra te .  

essentially equivalent to considering a plane-paral le ly  

s t ra t i f ied a tmosphere .  

be  careful  that  we do not misinterpret  our  boundary conditions. 

This is 

In doing such an expansion, we must  

In par t icular ,  to apply boundary conditions a t  f co will  probably 

lead to f a l se  conclusions, and certainly is not physically 

meaningful. 

If we le t  

5 = z-z  
0 

and expand the coefficients, neglecting t e r m s  of the o rde r  of 

(5/zo)  then our  equations reduce to 

where  

In the above a1 is the reciprocal ra t io  of the scale  height of the 

molecular  constituent which is involved in the recombination 

mechanism to the scale height of the neut ra l  constituent and 

- - knno s e c  € ) / ( a - l ) .  Equation (11) is s imi l a r  to one studied by 
p m  
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Bowhill [ 1962 ] and others With the substitution 

x = exp -(a1 t I )  5 (15) 

we  can reduce equation (1 1) to one whose solution is readily expressible  

in t e r m s  of Hankel functions of imaginary argument  and the associated 

Lommel  functions (See Bowhill [ 1962 3 ) .  

where  

2 t a  
2 ( a t  1) ( l t a l )  a 2  = 

a 
( a t  1) (1-t-a-1) v =  

The solution to  the homogeneous portion of (16) is 

= A1 x a 2  I v  ( 2 G )  t A2 xa2 I -V (2  6). "'e c 

Since v e r y  small x corresponds to l a rge  z ,  the Taylor s e r i e s  expansion 

of (18) enables us  t o  determine that the second solution I - v  corresponds  



to the exponential solution 

A2 x a 2 1 - , ( 2 ~ )  % A2 exp ( B / ( l + a ) z ) ,  

while the first solution Iv corresponds to  the neutral  solution (6) .  

essent ia l  details of this calculation a r e  in Bowhill [ 19621 

that the homogeneous portion of equation ( 16) includes the recombination 

t e r m .  Now the condition of s t r ic t  diffusive equilibrium a t  infinity 

would correspond to choosing A1 = 0. 

solution to (16)  when the ionization rate  is ze ro ,  say  a t  night, then we 

s e e  that no peak can exis t ,  since the two solutions in (18) a r e  monotonic 

functions of 5 .  

The 

We note 

Since equation (18) is the complete 

Thus the choice A1 = 0 fo r  one boundary condition is 

equivalent to p1acin.g the entire burden of maintaining a peak in the 

electron density on the ionizing radiation. Thus the choice A1 = 0 is 

inconsistent with the observed phenomenon that a peak in  ion density 

exis ts  a t  night in the absence of ionizing radiation. 

as in the previous models,  the condition that the solution tend 

asymptotically towa rd diffusive equilibrium is automa tically satisfied 

f o r  any non-zero choice of the a r b i t r a r y  coefficients since it is 

equivalent to 

W e  note a l so  that,  

IV V lim - = o = lim xz 
x 40 

-V I 
x -0 

Thus these considerations do not give a physically reasonable definitive 

choice f o r  the a r b i t r a r y  coefficients in (18). 

A I  = 0 is not permissible .  

Our only conclusion is that 



- 10 - 

At the other end, by considering the asymptotic expansion fo r  

the Hankel functions fo r  la rge  5 we can determine the nature of the 

solution (18) nea r  the bottom of our  a tmosphere.  But the functions 

&,(y) diverge exponentially for  large values of their  a rguments ,  and 

since y itself is an  exponential, then the solution (18) has  the 

asymptotic value 

= exp (2 a e x p  - "'e c 

where F( 5 ) is a non-vanishing function of 5 .  

to  the electron density distribution in the absence of ionizing radiation 

and including the effects of recombination. 

increasing solution in the presence of a recombination mechanism which 

itself i s  becoming m o r e  and more  effective a s  the altitude dec reases  

is not physically reasonable.  

an  acceptable solution below the region of maximum ionization ra te  is 

A1 = A z ,  s o  that the solution (18) can be wri t ten 

But ye, i s  the solution 

To have an exponentially 

Thus the only solution to (18) which gives 

This solution does not f i t  the condition of s t r i c t  diffusive equilibrium 

above the peak. 

equilibrium cannot be a real is t ic  boundary condition, cont ra ry  to the 

assumptions of Bowhill and o thers .  

a peak in the inter ior ,  independent of the f a c t  that  there  is no ionizing 

radiation. 

the ion density distribution. 

Thus there i s  a second argument  that s t r i c t  diffusive 

We note a l s o  that equation (22 )  has 

The recombination alone is suff ic ient  to c rea t e  a peak in 

(Of course ,  to maintain a steady s ta te ,  



- 11 - 

non-zero electron density distribution with only recombination present ,  

there  m u s t  be a flux of electrons and ions a c r o s s  one of the boundaries.  

And we shal l  s e e  l a t e r  that there is a flux a c r o s s  the outer boundary.)  

Reverting to the inhomogeneous equation (16) the full solution is  

expressible  in t e r m s  of Hankel functions and associated Lommel 

functions ( see  Watson [1952] ). 

written a s  

A part icular  solution N1 of (16) can  b e  

where  

2 @(a+ l ) + a  
( 1 t a ) (  1 t a y 5 =  2 



- 12 - 

Using asymptotic expansions of the t e rms  in ( 2 3 )  we will  be 

able to identify the behavior of this par t icular  solution above and 

below the point 6 = 0. The asymptotic expansion fo r  the functions 

p,v(y) (see Watson [1952])  gives the f i r s t  t e r m  of the s e r i e s  a s  

This expansion i s  asymptotic f o r  5 - - 0 0 ,  that i s ,  below the peak in  

the ionization ra te .  

long a s  the effective molecular  weight of the molecular  speoies 

involved in the recombination i s  grea te r  than the effective molecular 

weight of the ionizable constituent, which condition holds fo r  the 

ionosphere.  

exponential approach to ze ro ,  while the complementary solution (22)  

goes a s  exp [exp 5 1 .  

the solution to (16) sufficiently f a r  below the ionization ra te  peak. 

W e  a l so  note that, because of the nature of our expression f o r  the 

ionizing radiation, the expression (24) will  become negative a t  the 

point where 

The par t icular  solution (24) tends to z e r o  a s  

We note that the par t icular  solution (24) has  only an 

Thus the par t icular  solution will  dominate 

Thus equation (25)  can be used ot obtain a crude approximation to  the 

location of the bottom of the ionosphere.  

involved give a value of 6 = - 1 . 7 .  

Typical values fo r  the t e r m s  

Thus the ion-electron density drops to  z e r o  in  l e s s  than 2 scale  
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heights ( -  100 k m )  below the point of peak ionization ra te .  This 

is the o rde r  of magnitude of answer which i s  observed. This answer 

is expected to be only a c rude  approximation fo r  two reasons .  F i r s t ,  

the expression f o r  the ionization term is itself a crude model. 

Secondly, the value - 1 . 7  is obtained by using the only f i r s t  t e r m  of 

an asymptotic expansion, valid f o r  5 - -a. I t  i s  of in te res t  to 

check whether only one t e r m  is sufficient. 

A sufficient condition that the asymptotic representation is 

given to a reasonable degree of accuracy  by the f i r s t  t e r m  alone is 

that the second t e r m  in the asymptotic s e r i e s  by negligible in comparison 

with the f i r s t .  This requirement can be reduced to 

Using typical values f o r  the F - l aye r ,  we see  that this inequality holds 

f o r  values of 6 slightly less than 1. 

is a valid representation f o r  ( 2 3 )  a t  distances of only one scale  height 

below the peak in the ionizing radiation. 

Thus the asymptotic expression 

To obtain the behavior of the par t icular  solution ( 2 3 )  above 

the peak we obtain the Taylor s e r i e s  solution f o r  the functions 

2 (y) ,  using Watson [ 1952lagain. We see  that 
tJ.9 v 

The condition fo r  neglecting the next t e r m  in the Taylor s e r i e s  is 
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given by 

y2 << ( p  t 3)Z - v2 , 

which can be wri t ten 

F o r  the values typical of the ionosphere these inequalities hold again 

for  e; = 1, and s o  the Taylor s e r i e s  expression fo r  the par t icular  

solution is valid everywhere more  than one scale  height above the 

peak of the ionizing radiation. 

solution N1 consists of a t e r m  which i s  essent ia l ly  proportional t o  

the ionization t e r m  plus two diffusive te rms. The f i r s t  represents  

the contribution to the electron density of the ionizing radiation, 

without the action of diffusion, and the second two t e r m s  represent  

the redistribution of the electrons by the diffusive and recombination 

mechanisms.  

the par t icular  solution above the peak only indirect ly ,  in that none of 

the three te rms  in the expansion (27 )  is direct ly  proportional to the 

recombination t e rm,  in contrast  to below the peak. However, it 

would be incor rec t  to conclude f r o m  this,  a s  Bowhill [ 19621 has  done, 

that the recombination coefficient does not effect  the formation of 

the electron peak (which is  above the ionization peak) ,  s ince ,  a s  we 

have seen ,  a peak exists in the complementary solution f o r  the electron 

We see  f r o m  (27) that the par t icular  

W e  note that the recombination coefficient pz influences 



density in the absence of ionizing radiation, due to the recombination. 

The recombination coefficient enters indirectly in the coefficients 

of the second two, diffusive, t e rms  in (27). 

Thus the par t icular  solution (23) obeys the one boundary 

condition we have applied, namely that the electron density vanish 

sufficiently far below the ionization peak. 

is given by the s u m  of (23) and (22 ) ,  that is 

Thus the solution to (11) 

qe = A i  xazKv (2 G) t Ni (x). 

The fac t  that  the atmosphere is finite and thus the lower boundary is  

not a t  5 = - co does not a l t e r  this lower boundary condition since all 

other  solutions to (1 1) involve I 

growing. 

(2  d F ' )  which is exponentially 

This is a physically impossible situation in  the presence 

of both a decreasing ionization and an increasing recombination. 

Thus the solution to  the electron density distribution is 

reduced to determining the constant A1 in (30). To do s o  we m u s t  

decide on another boundary condition. 

unequivocal choice for  this condition. Many authors Leg: Bowhill 

[ 1962 ]] chose diffusive equilibrium. Others [Nisbet [ 1963 ]] 

chose a given flux a t  a specified height. In this paper we decide 

to defer  the question until we have investigated the solution fo r  the 

Unfortunately there  is no 

e lec t r ic  field and those for  the flow velocit ies.  

IV.  The Elec t r ic  Field and the Flow Velocities 

By eliminating the ionization and recombination t e r m s  
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between equations (7)  and (8) we can obtain 

V '  cp = - a 0'1n qe. 

This has  the solution 

d A - 
2' 

E = -a dz lnqe  t 

( 3  1) 

and the diffusion velocities can be writ ten 

where  dX is the rat io  of ion-neutral  to ion-electron collision 

frequencies a Thus 

Then f r o m  ( 3 2 )  the condition of s t r i c t  diffusive equilibrium a t  

infinity means that A = 0,  and thus f r o m  ( 3 5 )  the ion and electron 

velocities would be equal throughout. 

that there  is a downward flux of par t ic les  f r o m  the top of the 

atmosphere.  

o r  fo r  s t r i c t  diffusive equilibrium, 

Equations ( 3 3 )  and ( 3 4 )  show 

This can be seen by noting that fo r  s ta t ic  equilibrium, 
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and 

s o  that f o r  an ionosphere with a peak (where- lny 

the parentheses in (34) and in (33) a r e  always positive. 

vanishes)  dz e 

We now consider equations (32)-(35) in m o r e  detail.  If we 

take as a condition that there  be no net cu r ren t  a t  any one point, 

then there  is no cu r ren t  anywhere, and thus, in  (35) and (32),  

A = 0 .  

Then f r o m  (32) we see  that 

Thus,  a t  the peak in  electron density,  the e lec t r ic  field vanishes;  

below the peak the electr ic  field changes sign, and actually increases  

the effective gravitational field on the ions (instead of reducing it to 

half the field as a s imple ,  isothermal ,  s ta t ic  analysis gives).  

equation (37) says  that the electr ic  field, in magnitude, is equal to 

l I a l ’  t imes the slope of the electron density profile (measured  in neut ra l  

sca le  heights).  

peak, can be seve ra l  times the gravitational f ield.  

Crudely,  

Thus the electric field, below the electron density 
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W e  note a l s o  that t k r e  i s  no inherent requirement  in this 

formulation that A be chosen zero .  

inconsistency in requiring e lec t r ica l  neutrali ty and still not requiring 

ambipolar diffusion. 

papers  (Chandra [ 19641 , Kendall [ 1964 ] ). 

Comstock [ l965b ] 

jus t  below the region under consideration, a ver t ical  cu r ren t  may be 

necessa ry  to maintain a steady s ta te .  

continuity a cur ren t  would have to exis t  in this region also.  Thus 

the constant A in (35) would be determined by  this cur ren t .  However, 

the choice of a non-zero A does not a l t e r  any of our above conclusions 

except in the actual location of the ze ro  e lec t r ic  field. [ T h e r e  would, 

of course ,  have to be some mechanism outside the region under 

consideration to provide a closed path fo r  the re turn  of such a cu r ren t . ]  

Outside of this consideration there  is then no compelling physical 

boundary condition which fo rces  any one choice f o r  the a r b i t r a r y  

constant A in the solution ( 3 2 )  f o r  the e lec t r ic  field. 

That i s ,  there  i s  no internal  

This topic has been the subject of s eve ra l  recent  

In a recent  paper 

has pointed out that in the region of low ionization, 

If this were  s o ,  then by 

Turning to the flow velocit ies,  equation (34) shows that  the 

condition of diffusive equilibrium fo r  the electron density is equivalent 

t o  z e r o  ion velocity. 

physically logical condition fo r  determining the other constant A I  

in the electron density solution ( 3 0 ) .  A common choice is  no ion 

flux a t  infinity, 

Thus the ion flux a t  any one point i s  the 
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i 

This would require  that the electron density distribution be in  s t r i c t  

diffusive equilibrium a t  infinity. However, since our  solution fo r  the 

electron density distribution is i n  t e r m s  of a plane paral le l  coordinate 

sys tem,  a g rea t  deal  of c a r e  must  b e  taken in applying this condition. 

W e  proceed as follows: using the Taylor s e r i e s  expansion f o r  our 

answer ,  valid some distance above the region 5 = 0,  we obtain 

This can be wri t ten 

F o r  sufficiently la rge  5 ,  a l l  of the t e r m s  in the bracke t ,  except c1 , 

vanish,  regard less  of the values of c2, c3, o r  c4 . However, the 

fac t  that all the solutions of (1 1) a r e  of the fo rm exp (-kc) is a 

consequence of the plane -parallel  approximation. The solution to 

the simplified equations in spherical  coordinates a r e  of the f o r m  

exp ( k / r ) ,  which f o r m  does - not vanish fo r  l a r g e  r .  Thus we a s sume  

that the solution to the co r rec t  problem, in spherical  coordinates , 

would not be in  t e r m s  of vanishing exponentials e 
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The boundary condition of s t r i c t  diffusive equilibrium i s  

given normally by the equation 

Because of this vanishing of the exponential solutions the equation (41) 

i s  satisfied f o r  any choice of A1 in (39). 

approximation to plane -paral le l  coordinates,  another way to express  

the boundary condition mus t  be found. 

[ 1958 ] 

of exp ( - 5 )  shddld vanish. 

g rea t  heights any par t ic les  created by the ionizing radiation can  

diffuse only with the effective molecular weight of the ion-electron 

p lasma.  

Thus, because of our  

Bowhill [ 1962 ] Yonezawa 

and others have interpreted it to mean that the coefficient 

This i s  equivalent to requiring that a t  

The author sees  no physical justification f o r  this distinction. 

A m o r e  realist ic requirement  is that the constant A1 be  

chosen so  that all t e rms  in equation (39) vanish, except the t e r m  

exp [ - c / l t a ) ]  

This real ly  cannot be the point 5 = a, since ou r  plane para l le l  

approximation must  fail  fo r  large values of 5 .  

then 

a t  the point where the ion velocity i s  to vanish. 

Le t  5, be this point; 

is the condition that the ion flux vanish a t  the point 5 . m 
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Then the solution for  the electron density distribution i s  

(43 1 

The ion velocity everywhere i s  then given by equation (34) and 

is downward throughout the atmosphere.  

be determined until the constant A is determined. Until more  information 

is known about the electr ic  field in the atmosphere,  we have no:way 

to  determine this constant. 

The electron velocity cannot 

V .  Conclusions 

The electron density distribution obtained h e r e  ag rees  in f o r m  

with those obtained by other authors,  ( s ee  Bowhill[ 19621 , and 

references therein) .  By including a m o r e  rea l i s t ic  e lectron production 

term the f i t  of this model to the photoequilibrium curve a t  low altitudes 

is somewhat be t te r .  It is seen  that the 

c r i t i ca l  condition, f r o m  a theoretical point of view, i s  the boundary 

condition a t  the top of the ionosphere. 

point of view, the production and loss  t e r m s  a t  g rea t  heights a r e  

sufficiently sma l l  that  the numerical  value of the solution i s  not sensit ive 

to  whether diffusive equilibrium i s  taken to mean that the plasma 

diffuses s t r ic t ly  a t  the plasma "mean molecular" weight, o r  whether ,  a s  

mos t  people take i t ,  the plasma has no diffusion a t  the neutral  molecular  

weight. 

( see  Bowhill [ 1962 ] , figure 2 ) .  

Fortunately,  f r o m  a numerical  
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The analytical f o r m  of the electron density in  t e r m s  of the 

Hankel functions of imaginary argument shows why there  has been 

difficulty trying to integrate  the diffusion equations numerically down- 

ward  f r o m  the top of the ionosphere. 

found a change of 1 p a r t  in in  their  initial conditions a t  the top 

would cause an exponential divergence in the solution a t  the bottom. 

Rishbeth and Barron  [ 1960 ] 

Since the Hankel functions in  the analytical solution h e r e  a r e  basically 

exponential functions of their  arguments below the electron production 

peak, this is to be  expected. 

It is seen that the electron density solution is determined 

by the ion flux a t  g rea t  height, independent of the electron flux. 

Thus a vertical  cu r ren t  is compatible with, and has no f i r s t  o rde r  

- 

effect on, the usually obtained electron density. 

exis ts  is seen to be  direct ly  related to the e lec t r ic  field in the 

Any c u r r e n t  which 

ionosphere.  The presence ,  o r  absence,  of such a c u r r e n t  cannot 

be settled within the framework of the present  formulation, but 

mus t  be taken as a boundary condition. 

Even in the absence of any cu r ren t  the e lec t r ic  field in the 

ionosphere required to maintain charge neutrali ty is quite different 

f r o m  the usual static approximation. The e lec t r ic  field is  seen to 

be as much as 3 - 4  t imes the gravitational field below the F - l aye r  

peak and of the opposite sign f r o m  the usual s ta t ic  approximation. 

Since the e lec t r ic  field in the F - l a y e r  is influential in  

determining the loss  of high energy par t ic les  trapped on the 

magnetosphere,  fu r the r  exploration of this point should be of i n t e re s t .  
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